Rain or Snow: Hydrologic Processes, Observations, Prediction, and Research Needs

نویسندگان

  • Adrian A. Harpold
  • Michael L. Kaplan
  • P. Zion Klos
  • Timothy Link
  • James P. McNamara
  • Seshadri Rajagopal
  • Rina Schumer
  • Caitriana M. Steele
چکیده

The phase of precipitation when it reaches the ground is a first-order driver of hydrologic processes in a watershed. The presence of snow, rain, or mixed-phase precipitation affects the initial and boundary conditions that drive hydrological models. Despite their foundational importance to terrestrial hydrology, typical phase partitioning methods (PPMs) specify the phase based on near-surface air temperature only. Our review conveys the diversity of tools available for PPMs in hydrological modeling and the advancements needed to improve predictions in complex terrain with large spatiotemporal variations in precipitation phase. Initially, we review the processes and physics that control precipitation phase as relevant to hydrologists, focusing on the importance of processes occurring aloft. There is a wide range of options for field observations of precipitation phase, but there is a lack of a robust observation networks in complex terrain. New remote sensing observations have the potential to increase PPM fidelity, but generally require assumptions typical of other PPMs and field validation before they are operational. We review common PPMs and find that accuracy is generally increased at finer measurement intervals and by including humidity information. One important tool for PPM development is atmospheric modeling, which includes microphysical schemes that have not been effectively linked to hydrological models or validated against near-surface precipitation-phase observations. The review concludes by describing key research gaps and recommendations to improve PPMs, including better incorporation of atmospheric information, improved validation datasets, and regional-scale gridded data products. Two key points emerge from this synthesis for the hydrologic community: (1) current PPMs are too simple to capture important processes and are not well validated for most locations, (2) lack of sophisticated PPMs increases the uncertainty in estimation of hydrological sensitivity to changes in precipitation phase at local to regional scales. The advancement of PPMs is a critical research frontier in hydrology that requires scientific cooperation between hydrological and atmospheric modelers and field scientists.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soil , snow , weather , and sub - surface storage data from a mountain catchment in the rain – snow transition zone

A comprehensive hydroclimatic data set is presented for the 2011 water year to improve understanding of hydrologic processes in the rain–snow transition zone. This type of data set is extremely rare in scientific literature because of the quality and quantity of soil depth, soil texture, soil moisture, and soil temperature data. Standard meteorological and snow cover data for the entire 2011 wa...

متن کامل

Simulation of Water and Energy Fluxes in an Old-Growth Seasonal Temperate Rain Forest Using the Simultaneous Heat and Water (SHAW) Model

In the Pacific Northwest (PNW), concern about the impacts of climate and land cover change on water resources and flood-generating processes emphasizes the need for a mechanistic understanding of the interactions between forest canopies and hydrologic processes. Detailed measurements during the 1999 and 2000 hydrologic years were used to modify the Simultaneous Heat and Water (SHAW) model for a...

متن کامل

An evaluation of methods for determining during-storm precipitation phase and the rain/snow transition elevation at the surface in a mountain basin

Determining surface precipitation phase is required to properly correct precipitation gage data for wind effects, to determine the hydrologic response to a precipitation event, and for hydrologic modeling when rain will be treated differently from snow. In this paper we present a comparison of several methods for determining precipitation phase using 12 years of hourly precipitation, weather an...

متن کامل

Determining the Snow Coefficient in order to simulate the snow melting in the Shemshak Watershed Using the WetSpa Model

In mountainous regions, snow forms a part of the precipitation. Therefore, snow melting is an important process in hydrology and hydraulic in these areas that its role should be considered independently in runoff generation. The Shemshak watershed basin located in Tehran province was selected as the study area of this research to examine the efficiency of the WetSpa hydrologic model to simulate...

متن کامل

Snowpack-Runoff Relationships for Mid-Elevation Snowpacks on the Workman Creek Watersheds of Central Arizona

Snowpacks in the southwestern United States melt intermittently throughout the winter. At some mid-elevation locations, between 7,000 and 7,500 ft, snowpacks appear and disappear, depending on the distribution of storms during relatively dry winters. Some winter precipitation can occur as rain during warm storms and is not reflected in the snow course data. The USDA Natural Resources Conservati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017